Variational Gaussian Process Auto-Encoder for Ordinal Prediction of Facial Action Units

نویسندگان

  • Stefanos Eleftheriadis
  • Ognjen Rudovic
  • Marc Peter Deisenroth
  • Maja Pantic
چکیده

We address the task of simultaneous feature fusion and modeling of discrete ordinal outputs. We propose a novel Gaussian process (GP) auto-encoder modeling approach. In particular, we introduce GP encoders to project multiple observed features onto a latent space, while GP decoders are responsible for reconstructing the original features. Inference is performed in a novel variational framework, where the recovered latent representations are further constrained by the ordinal output labels. In this way, we seamlessly integrate the ordinal structure in the learned manifold, while attaining robust fusion of the input features. We demonstrate the representation abilities of our model on benchmark datasets from machine learning and affect analysis. We further evaluate the model on the tasks of feature fusion and joint ordinal prediction of facial action units. Our experiments demonstrate the benefits of the proposed approach compared to the state of the art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DeepCoder: Semi-parametric Variational Autoencoders for Facial Action Unit Intensity Estimation

Variational (deep) parametric auto-encoders (VAE) have shown a great potential for unsupervised extraction of latent representations from large amounts of data. Human face exhibits an inherent hierarchy in facial representations (encoded in facial action units (AUs) and their intensity). This makes VAE a sophisticated method for learning facial features for AU intensity estimation. Yet, most ex...

متن کامل

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features

In this note we present a generative model of natural images consisting of a deep hierarchy of layers of latent random variables, each of which follows a new type of distribution that we call rectified Gaussian. These rectified Gaussian units allow spike-and-slab type sparsity, while retaining the differentiability necessary for efficient stochastic gradient variational inference. To learn the ...

متن کامل

Hyperspherical Variational Auto-Encoders

The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue w...

متن کامل

Variational Gaussian Process

Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016